본문 바로가기
읽은 책

[책 후기] 파이썬을 활용한 머신러닝 쿡북

by zero-coke-love 2019. 12. 13.
반응형

파이썬을 활용한 머신러닝 쿡북 표지

1. 제목

파이썬을 활용한 머신러닝 쿡북(Machine Learning with Python Cookbook)

2. 지은이

  • 지음 : 크리스 알본
  • 옮김 : 박해선

3. 링크 

http://www.hanbit.co.kr/store/books/look.php?p_code=B1652696754

 

파이썬을 활용한 머신러닝 쿡북

200여 개의 비법 레시피를 제공하는 이 책은 실무에서 접하는 다양한 머신러닝 문제를 해결하도록 도와준다. 판다스나 사이킷런 같은 파이썬 라이브러리로 데이터 적재, 텍스트나 수치형 데이터 다루기, 모델 선택, 차원 축소 등 다양한 문제를 해결할 수 있다.

www.hanbit.co.kr

4. 출판사

한빛미디어

5. 카테고리

머신러닝, 딥러닝, 판다스, 사이킷런, 데이터분석

6. 대상 독자

  • 머신러닝 기본 개념에 익숙한 사람(입문서가 아니라고 합니다.)
  • 데이터 분석을 하고 싶은 사람
  • 실제 데이터 분석 예제를 돌려보고 싶은 사람
  • 데이터 사이언티스트, 데이터 엔지니어, 머신러닝 엔지니어

7. 전체 페이지 수

508p

8. 출판사 책 소개

200개 비법 레시피로 실무 머신러닝 문제를 쉽고 빠르게 해결하기

 

200여 개의 비법 레시피를 제공하는 이 책은 실무에서 접하는 다양한 머신러닝 문제를 해결하도록 도와준다. 판다스나 사이킷런 같은 파이썬 라이브러리로 데이터 적재, 텍스트나 수치형 데이터 다루기, 모델 선택, 차원 축소 등 다양한 문제를 해결할 수 있다.

 

레시피의 코드를 샘플 데이터셋에 적용하며 실제로 코드가 어떻게 동작하는지 확인해본다. 문제 해결에 대한 설명과 유용한 배경지식도 제공한다. 이 책은 이론과 개념 설명을 넘어서 머신러닝 애플리케이션 제작에 필요한 구체적인 도구를 제시한다. 실무에서 레시피를 그대로 적용하거나 적절히 수정하여 쉽고 빠르게 문제를 해결하기 바란다.

 

9. 목차

더보기

CHAPTER 1 벡터, 행렬, 배열

__1.0 소개

__1.1 벡터 만들기

__1.2 행렬 만들기

__1.3 희소행렬 만들기

__1.4 원소 선택하기

__1.5 행렬 정보 확인하기

__1.6 벡터화 연산 적용하기

__1.7 최댓값, 최솟값 찾기

__1.8 평균, 분산, 표준편차 계산하기

__1.9 배열 크기 바꾸기

__1.10 벡터나 행렬 전치하기

__1.11 행렬 펼치기

__1.12 행렬의 랭크 구하기

__1.13 행렬식 계산하기

__1.14 행렬의 대각원소 추출하기

__1.15 행렬의 대각합 계산하기

__1.16 고윳값과 고유벡터 찾기

__1.17 점곱 계산하기

__1.18 행렬 덧셈과 뺄셈

__1.19 행렬 곱셈

__1.20 역행렬

__1.21 난수 생성하기

 

CHAPTER 2 데이터 적재

__2.0 소개

__2.1 샘플 데이터셋 적재하기

__2.2 모의 데이터셋 만들기

__2.3 CSV 파일 적재하기

__2.4 엑셀 파일 적재하기

__2.5 JSON 파일 적재하기

__2.6 SQL 데이터베이스로부터 적재하기

 

CHAPTER 3 데이터 랭글링

__3.0 소개

__3.1 데이터프레임 만들기

__3.2 데이터 설명하기

__3.3 데이터프레임 탐색하기

__3.4 조건에 따라 행 선택하기

__3.5 값 치환하기

__3.6 열 이름 바꾸기

__3.7 최솟값, 최댓값, 합, 평균 계산 및 개수 세기

__3.8 고유한 값 찾기

__3.9 누락된 값 다루기

__3.10 열 삭제하기

__3.11 행 삭제하기

__3.12 중복된 행 삭제하기

__3.13 값에 따라 행을 그룹핑하기

__3.14 시간에 따라 행을 그룹핑하기

__3.15 열 원소 순회하기

__3.16 모든 열 원소에 함수 적용하기

__3.17 그룹에 함수 적용하기

__3.18 데이터프레임 연결하기

__3.19 데이터프레임 병합하기

 

CHAPTER 4 수치형 데이터 다루기

__4.0 소개

__4.1 특성 스케일 바꾸기

__4.2 특성을 표준화하기

__4.3 정규화하기

__4.4 다항 특성과 교차항 특성 생성하기

__4.5 특성 변환하기

__4.6 이상치 감지하기

__4.7 이상치 다루기

__4.8 특성 이산화하기

__4.9 군집으로 샘플을 그룹으로 묶기

__4.10 누락된 값을 가진 샘플을 삭제하기

__4.11 누락된 값 채우기

 

CHAPTER 5 범주형 데이터 다루기

__5.0 소개

__5.1 순서가 없는 범주형 특성 인코딩하기

__5.2 순서가 있는 범주형 특성 인코딩하기

__5.3 특성 딕셔너리를 인코딩하기

__5.4 누락된 클래스 값 대체하기

__5.5 불균형한 클래스 다루기

 

CHAPTER 6 텍스트 다루기

__6.0 소개

__6.1 텍스트 정제하기

__6.2 HTML 파싱과 정제하기

__6.3 구두점 삭제하기

__6.4 텍스트 토큰화하기

__6.5 불용어 삭제하기

__6.6 어간 추출하기

__6.7 품사 태깅하기

__6.8 텍스트를 BoW로 인코딩하기

__6.9 단어 중요도에 가중치 부여하기

 

CHAPTER 7 날짜와 시간 다루기

__7.0 소개

__7.1 문자열을 날짜로 변환하기

__7.2 시간대 다루기

__7.3 날짜와 시간 선택하기

__7.4 날짜 데이터를 여러 특성으로 나누기

__7.5 날짜 간의 차이를 계산하기

__7.6 요일을 인코딩하기

__7.7 시차 특성 만들기

__7.8 이동 시간 윈도 사용하기

__7.9 시계열 데이터에서 누락된 값 다루기

 

CHAPTER 8 이미지 다루기

__8.0 소개

__8.1 이미지 로드하기

__8.2 이미지 저장하기

__8.3 이미지 크기 변경하기

__8.4 이미지 자르기

__8.5 이미지 흐리게 하기

__8.6 이미지 선명하게 하기

__8.7 대비 높이기

__8.8 색깔 구분하기

__8.9 이미지 이진화하기

__8.10 배경 제거하기

__8.11 경계선 감지하기

__8.12 모서리 감지하기

__8.13 머신러닝 특성 만들기

__8.14 평균 색을 특성으로 인코딩하기

__8.15 컬러 히스토그램을 특성으로 인코딩하기

 

CHAPTER 9 특성 추출을 사용한 차원 축소

__9.0 소개

__9.1 주성분을 사용해 특성 줄이기

__9.2 선형적으로 구분되지 않은 데이터의 차원 축소하기

__9.3 클래스 분리를 최대화하여 특성 줄이기

__9.4 행렬 분해를 사용하여 특성 줄이기

__9.5 희소한 데이터의 특성 줄이기

 

CHAPTER 10 특성 선택을 사용한 차원 축소

__10.0 소개

__10.1 분산을 기준으로 수치 특성 선택하기

__10.2 분산을 기준으로 이진 특성 선택하기

__10.3 상관관계가 큰 특성 다루기

__10.4 분류 작업에 관련 없는 특성 삭제하기

__10.5 재귀적 특성 제거하기

 

CHAPTER 11 모델 평가

__11.0 소개

__11.1 교차검증 모델 만들기

__11.2 기본 회귀 모델 만들기

__11.3 기본 분류 모델 만들기

__11.4 이진 분류기의 예측 평가하기

__11.5 이진 분류기 임곗값 평가하기

__11.6 다중클래스 분류기 예측 평가하기

__11.7 분류기 성능 시각화하기

__11.8 회귀 모델 평가하기

__11.9 군집 모델 평가하기

__11.10 사용자 정의 평가 지표 만들기

__11.11 훈련 세트 크기에 따른 영향을 시각화하기

__11.12 평가 지표 리포트 만들기

__11.13 하이퍼파라미터 값의 영향을 시각화하기

 

CHAPTER 12 모델 선택

__12.0 소개

__12.1 완전 탐색을 사용해 최선의 모델 선택하기

__12.2 랜덤 서치를 사용해 최선의 모델 선택하기

__12.3 여러 학습 알고리즘에서 최선의 모델 선택하기

__12.4 전처리와 함께 최선의 모델 선택하기

__12.5 병렬화로 모델 선택 속도 높이기

__12.6 알고리즘에 특화된 기법을 사용하여 모델 선택 수행 속도 높이기

__12.7 모델 선택 후 성능 평가하기

 

CHAPTER 13 선형회귀

__13.0 소개

__13.1 직선 학습하기

__13.2 교차 특성 다루기

__13.3 비선형 관계 학습하기

__13.4 규제로 분산 줄이기

__13.5 라소 회귀로 특성 줄이기

 

CHAPTER 14 트리와 랜덤 포레스트

__14.0 소개

__14.1 결정 트리 분류기 훈련하기

__14.2 결정 트리 회귀 훈련하기

__14.3 결정 트리 모델 시각화하기

__14.4 랜덤 포레스트 분류기 훈련하기

__14.5 랜덤 포레스트 회귀 훈련하기

__14.6 랜덤 포레스트에서 중요한 특성 구분하기

__14.7 랜덤 포레스트에서 중요한 특성 선택하기

__14.8 불균형한 클래스 다루기

__14.9 트리 크기 제어하기

__14.10 부스팅을 사용하여 성능 향상하기

__14.11 OOB 데이터로 랜덤 포레스트 평가하기

 

CHAPTER 15 k-최근접 이웃

__15.0 소개

__15.1 샘플의 최근접 이웃 찾기

__15.2 k-최근접 이웃 분류기 만들기

__15.3 최선의 이웃 개수 결정하기

__15.4 반지름 기반의 최근접 이웃 분류기 만들기

 

CHAPTER 16 로지스틱 회귀

__16.0 소개

__16.1 이진 분류기 훈련하기

__16.2 다중 클래스 분류기 훈련하기

__16.3 규제로 분산 줄이기

__16.4 대용량 데이터에서 분류기 훈련하기

__16.5 불균형한 클래스 다루기

 

CHAPTER 17 서포트 벡터 머신

__17.0 소개

__17.1 선형 분류기 훈련하기

__17.2 커널을 사용해 선형적으로 구분되지 않는 클래스 다루기

__17.3 예측 확률 계산하기

__17.4 서포트 벡터 식별하기

__17.5 불균형한 클래스 다루기

 

CHAPTER 18 나이브 베이즈

__18.0 소개

__18.1 연속적인 특성으로 분류기 훈련하기

__18.2 이산적인 카운트 특성으로 분류기 훈련하기

__18.3 이진 특성으로 나이브 베이즈 분류기 훈련하기

__18.4 예측 확률 보정하기

 

CHAPTER 19 군집

__19.0 소개

__19.1 k-평균을 사용한 군집

__19.2 k-평균 군집 속도 향상하기

__19.3 평균이동을 사용한 군집

__19.4 DBSCAN을 사용한 군집

__19.5 계층적 병합을 사용한 군집

 

CHAPTER 20 신경망

__20.0 소개

__20.1 신경망을 위한 데이터 전처리하기

__20.2 신경망 구성하기

__20.3 이진 분류기 훈련하기

__20.4 다중 분류기 훈련하기

__20.5 회귀 모델 훈련하기

__20.6 예측하기

__20.7 훈련 기록 시각화하기

__20.8 가중치 규제로 과대적합 줄이기

__20.9 조기종료로 과대적합 줄이기

__20.10 드롭아웃으로 과대적합 줄이기

__20.11 모델 훈련 진행 과정을 저장하기

__20.12 신경망을 k-폴드 교차검증하기

__20.13 신경망 튜닝하기

__20.14 신경망 시각화하기

__20.15 이미지 분류하기

__20.16 이미지 증식으로 성능 향상하기

__20.17 텍스트 분류하기

 

CHAPTER 21 훈련된 모델 저장과 복원

__21.0 소개

__21.1 사이킷런 모델을 저장하고 복원하기

__21.2 케라스 모델을 저장하고 복원하기

CHAPTER 1 벡터, 행렬, 배열

__1.0 소개

__1.1 벡터 만들기

__1.2 행렬 만들기

__1.3 희소행렬 만들기

__1.4 원소 선택하기

__1.5 행렬 정보 확인하기

__1.6 벡터화 연산 적용하기

__1.7 최댓값, 최솟값 찾기

__1.8 평균, 분산, 표준편차 계산하기

__1.9 배열 크기 바꾸기

__1.10 벡터나 행렬 전치하기

__1.11 행렬 펼치기

__1.12 행렬의 랭크 구하기

__1.13 행렬식 계산하기

__1.14 행렬의 대각원소 추출하기

__1.15 행렬의 대각합 계산하기

__1.16 고윳값과 고유벡터 찾기

__1.17 점곱 계산하기

__1.18 행렬 덧셈과 뺄셈

__1.19 행렬 곱셈

__1.20 역행렬

__1.21 난수 생성하기

 

CHAPTER 2 데이터 적재

__2.0 소개

__2.1 샘플 데이터셋 적재하기

__2.2 모의 데이터셋 만들기

__2.3 CSV 파일 적재하기

__2.4 엑셀 파일 적재하기

__2.5 JSON 파일 적재하기

__2.6 SQL 데이터베이스로부터 적재하기

 

CHAPTER 3 데이터 랭글링

__3.0 소개

__3.1 데이터프레임 만들기

__3.2 데이터 설명하기

__3.3 데이터프레임 탐색하기

__3.4 조건에 따라 행 선택하기

__3.5 값 치환하기

__3.6 열 이름 바꾸기

__3.7 최솟값, 최댓값, 합, 평균 계산 및 개수 세기

__3.8 고유한 값 찾기

__3.9 누락된 값 다루기

__3.10 열 삭제하기

__3.11 행 삭제하기

__3.12 중복된 행 삭제하기

__3.13 값에 따라 행을 그룹핑하기

__3.14 시간에 따라 행을 그룹핑하기

__3.15 열 원소 순회하기

__3.16 모든 열 원소에 함수 적용하기

__3.17 그룹에 함수 적용하기

__3.18 데이터프레임 연결하기

__3.19 데이터프레임 병합하기

 

CHAPTER 4 수치형 데이터 다루기

__4.0 소개

__4.1 특성 스케일 바꾸기

__4.2 특성을 표준화하기

__4.3 정규화하기

__4.4 다항 특성과 교차항 특성 생성하기

__4.5 특성 변환하기

__4.6 이상치 감지하기

__4.7 이상치 다루기

__4.8 특성 이산화하기

__4.9 군집으로 샘플을 그룹으로 묶기

__4.10 누락된 값을 가진 샘플을 삭제하기

__4.11 누락된 값 채우기

 

CHAPTER 5 범주형 데이터 다루기

__5.0 소개

__5.1 순서가 없는 범주형 특성 인코딩하기

__5.2 순서가 있는 범주형 특성 인코딩하기

__5.3 특성 딕셔너리를 인코딩하기

__5.4 누락된 클래스 값 대체하기

__5.5 불균형한 클래스 다루기

 

CHAPTER 6 텍스트 다루기

__6.0 소개

__6.1 텍스트 정제하기

__6.2 HTML 파싱과 정제하기

__6.3 구두점 삭제하기

__6.4 텍스트 토큰화하기

__6.5 불용어 삭제하기

__6.6 어간 추출하기

__6.7 품사 태깅하기

__6.8 텍스트를 BoW로 인코딩하기

__6.9 단어 중요도에 가중치 부여하기

 

CHAPTER 7 날짜와 시간 다루기

__7.0 소개

__7.1 문자열을 날짜로 변환하기

__7.2 시간대 다루기

__7.3 날짜와 시간 선택하기

__7.4 날짜 데이터를 여러 특성으로 나누기

__7.5 날짜 간의 차이를 계산하기

__7.6 요일을 인코딩하기

__7.7 시차 특성 만들기

__7.8 이동 시간 윈도 사용하기

__7.9 시계열 데이터에서 누락된 값 다루기

 

CHAPTER 8 이미지 다루기

__8.0 소개

__8.1 이미지 로드하기

__8.2 이미지 저장하기

__8.3 이미지 크기 변경하기

__8.4 이미지 자르기

__8.5 이미지 흐리게 하기

__8.6 이미지 선명하게 하기

__8.7 대비 높이기

__8.8 색깔 구분하기

__8.9 이미지 이진화하기

__8.10 배경 제거하기

__8.11 경계선 감지하기

__8.12 모서리 감지하기

__8.13 머신러닝 특성 만들기

__8.14 평균 색을 특성으로 인코딩하기

__8.15 컬러 히스토그램을 특성으로 인코딩하기

 

CHAPTER 9 특성 추출을 사용한 차원 축소

__9.0 소개

__9.1 주성분을 사용해 특성 줄이기

__9.2 선형적으로 구분되지 않은 데이터의 차원 축소하기

__9.3 클래스 분리를 최대화하여 특성 줄이기

__9.4 행렬 분해를 사용하여 특성 줄이기

__9.5 희소한 데이터의 특성 줄이기

 

CHAPTER 10 특성 선택을 사용한 차원 축소

__10.0 소개

__10.1 분산을 기준으로 수치 특성 선택하기

__10.2 분산을 기준으로 이진 특성 선택하기

__10.3 상관관계가 큰 특성 다루기

__10.4 분류 작업에 관련 없는 특성 삭제하기

__10.5 재귀적 특성 제거하기

 

CHAPTER 11 모델 평가

__11.0 소개

__11.1 교차검증 모델 만들기

__11.2 기본 회귀 모델 만들기

__11.3 기본 분류 모델 만들기

__11.4 이진 분류기의 예측 평가하기

__11.5 이진 분류기 임곗값 평가하기

__11.6 다중클래스 분류기 예측 평가하기

__11.7 분류기 성능 시각화하기

__11.8 회귀 모델 평가하기

__11.9 군집 모델 평가하기

__11.10 사용자 정의 평가 지표 만들기

__11.11 훈련 세트 크기에 따른 영향을 시각화하기

__11.12 평가 지표 리포트 만들기

__11.13 하이퍼파라미터 값의 영향을 시각화하기

 

CHAPTER 12 모델 선택

__12.0 소개

__12.1 완전 탐색을 사용해 최선의 모델 선택하기

__12.2 랜덤 서치를 사용해 최선의 모델 선택하기

__12.3 여러 학습 알고리즘에서 최선의 모델 선택하기

__12.4 전처리와 함께 최선의 모델 선택하기

__12.5 병렬화로 모델 선택 속도 높이기

__12.6 알고리즘에 특화된 기법을 사용하여 모델 선택 수행 속도 높이기

__12.7 모델 선택 후 성능 평가하기

 

CHAPTER 13 선형회귀

__13.0 소개

__13.1 직선 학습하기

__13.2 교차 특성 다루기

__13.3 비선형 관계 학습하기

__13.4 규제로 분산 줄이기

__13.5 라소 회귀로 특성 줄이기

 

CHAPTER 14 트리와 랜덤 포레스트

__14.0 소개

__14.1 결정 트리 분류기 훈련하기

__14.2 결정 트리 회귀 훈련하기

__14.3 결정 트리 모델 시각화하기

__14.4 랜덤 포레스트 분류기 훈련하기

__14.5 랜덤 포레스트 회귀 훈련하기

__14.6 랜덤 포레스트에서 중요한 특성 구분하기

__14.7 랜덤 포레스트에서 중요한 특성 선택하기

__14.8 불균형한 클래스 다루기

__14.9 트리 크기 제어하기

__14.10 부스팅을 사용하여 성능 향상하기

__14.11 OOB 데이터로 랜덤 포레스트 평가하기

 

CHAPTER 15 k-최근접 이웃

__15.0 소개

__15.1 샘플의 최근접 이웃 찾기

__15.2 k-최근접 이웃 분류기 만들기

__15.3 최선의 이웃 개수 결정하기

__15.4 반지름 기반의 최근접 이웃 분류기 만들기

 

CHAPTER 16 로지스틱 회귀

__16.0 소개

__16.1 이진 분류기 훈련하기

__16.2 다중 클래스 분류기 훈련하기

__16.3 규제로 분산 줄이기

__16.4 대용량 데이터에서 분류기 훈련하기

__16.5 불균형한 클래스 다루기

 

CHAPTER 17 서포트 벡터 머신

__17.0 소개

__17.1 선형 분류기 훈련하기

__17.2 커널을 사용해 선형적으로 구분되지 않는 클래스 다루기

__17.3 예측 확률 계산하기

__17.4 서포트 벡터 식별하기

__17.5 불균형한 클래스 다루기

 

CHAPTER 18 나이브 베이즈

__18.0 소개

__18.1 연속적인 특성으로 분류기 훈련하기

__18.2 이산적인 카운트 특성으로 분류기 훈련하기

__18.3 이진 특성으로 나이브 베이즈 분류기 훈련하기

__18.4 예측 확률 보정하기

 

CHAPTER 19 군집

__19.0 소개

__19.1 k-평균을 사용한 군집

__19.2 k-평균 군집 속도 향상하기

__19.3 평균이동을 사용한 군집

__19.4 DBSCAN을 사용한 군집

__19.5 계층적 병합을 사용한 군집

 

CHAPTER 20 신경망

__20.0 소개

__20.1 신경망을 위한 데이터 전처리하기

__20.2 신경망 구성하기

__20.3 이진 분류기 훈련하기

__20.4 다중 분류기 훈련하기

__20.5 회귀 모델 훈련하기

__20.6 예측하기

__20.7 훈련 기록 시각화하기

__20.8 가중치 규제로 과대적합 줄이기

__20.9 조기종료로 과대적합 줄이기

__20.10 드롭아웃으로 과대적합 줄이기

__20.11 모델 훈련 진행 과정을 저장하기

__20.12 신경망을 k-폴드 교차검증하기

__20.13 신경망 튜닝하기

__20.14 신경망 시각화하기

__20.15 이미지 분류하기

__20.16 이미지 증식으로 성능 향상하기

__20.17 텍스트 분류하기

 

CHAPTER 21 훈련된 모델 저장과 복원

__21.0 소개

__21.1 사이킷런 모델을 저장하고 복원하기

__21.2 케라스 모델을 저장하고 복원하기

10. 후기

10.1. 장점 및 특징

이 책의 가장 큰 장점은 실습을 통하여 배울 수 있다는 점인 것 같습니다. 이론 위주의 책이 있는 반면에, 실제 구현을 통한 실습 위주의 책이 있는데 이 책은 후자입니다. 위의 사진을 보면 쉽게 확인 할 수 있습니다. 하나의 예제 문제에 따라서 그에 따른 해결책을 제시해줍니다. 

 

  • '행렬을 만들어야 합니다.' => '넘파이를 이용하여 행렬을 만드는 방법 제시'
  • '두 벡터의 점곱을 계산해야 합니다.' => '넘파이 dot 함수를 사용합니다'
  • '특성 행렬에서 일부 특성의 상관관계가 크다고 의심됩니다.' => '상관관계 행렬을 사용하여 상관관계가 큰 특성을 확인하고 이들 중 하나를 삭제합니다.' 

위와 같은 식입니다. 각 단원의 번호마다 한 예제씩 주어지기 때문에, 목차에서 원하는 것을 찾아서 쉽게 실습할 수 있습니다. 각각 코드의 줄에 모두 주석이 달려있고 상세한 설명이 있어서 코드 이해에 도움을 줍니다. 또, 색이 다양해서 좋네요.

 

개인적으로 좋은 점은 트리, 랜덤 포레스트, 로지스틱 회귀, 서포트 벡터 머신 등등 다양한 통계 이론들을 직접 실습해볼수 있는 점이었습니다. 통계관련 학과가 아니다 보니 이런 지식에 약한데 이런 지식을 직접 익힐 수 있다는 점이 좋았습니다. 또, 신경망을 keras를 통하여 체험할 수 있다는 점도 역시 좋았습니다.

 

다양한 지식을 다루기 때문에 전반적으로 모르는 내용을 다 훑고나서 나중에 잊어버렸거나 모르는 내용이 있으면 찾아서 해결하면 될 것 같습니다. '모르는 것이 뭔지 알 수 있게 해주는 책' 이라고 생각합니다. 쉽게 설명하고 예제도 쉬운 편이기 때문에 이해가 잘 되는 것도 좋습니다. 쉬운 책을 선호해서 꽤 만족스럽네요. 

10.2. 주의사항 및 단점

초반부에는 쉬운 예제부터 나와서 얼핏 보면 개념 설명도 모두 해주는 것 같지만, 이 책에서는 이미 '개념적인 부분'은 안다는 전제가 깔려 있습니다. 가령 '선형회귀', '결정트리' 와 같은 개념을 설명해주지는 않고, 안다는 전제 하에서 예제를 진행하기 때문에 먼저 관련된 지식을 얻고 나서 보는 것을 추천드립니다. 

 

또, 한 개념에 대하여 강력하게 여러 예제를 실습하기 보다는 모든 내용에 대하여 두루 읽을 수 있는 책이기 때문에, '하나를 깊게 파고 싶다' 라거나 '고수를 위한 책'을 찾는 분께는 맞지 않는 것 같습니다. 또, 전반적으로 훑기 때문에 이런 책을 좋아하지 않는 분들에게도 맞지 않을 것 같습니다.

 

난이도 자체가 '중수'나 '이제 기초는 배운 것 같은데 다음은?' 정도에 맞춰진 책으로 보여집니다. 따라서, 직접 읽어봐야 자신에게 맞는 책인지 알 수 있다고 생각이 들기 때문에 직접 읽어보시거나 미리보기를 꼭 보시기를 권해드립니다. 

반응형

댓글